
Week 1 - Friday

 What did we talk about last time?
 More C basics
 C compilation model
 History of Unix and Linux

ANSI C retains the basic philosophy that programmers
know what they are doing; it only requires that they state
their intentions explicitly.

Kernighan and Ritchie
from The C Programming Language, 2nd Edition

 By default, every integer is assumed to be a signed int
 If you want to mark a literal as long, put an L or an l at the end
 long value = 2L;
 Don't use l, it looks too much like 1
 There's no way to mark a literal as a short

 If you want to mark it unsigned, you can use a U or a u
 unsigned int x = 500u;

 Every value with a decimal point is assumed to be double
 If you want to mark it as a float, put an f or an F at the end
 float z = 1.0f;

 You can also write a literal in hexadecimal or octal
 A hexadecimal literal begins with 0x
 int a = 0xDEADBEEF;
 Hexadecimal digits are 0 – 9 and A – F (upper or lower case)

 An octal literal begins with 0
 int b = 0765;
 Octal digits are 0 – 7
 Be careful not to prepend other numbers with 0, because they will be in octal!

 Remember, this changes only how you write the literal, not how it's
stored in the computer

 Can't write binary literals

 The printf() function provides flags for printing out
integers in:
 %d Decimal
 %x Hexadecimal (%Xwill print A-F in uppercase)
 %o Octal

printf("%d", 1050); // Prints 1050
printf("%x", 1050); // Prints 41a
printf("%X", 1050); // Prints 41A
printf("%o", 1050); // Prints 2032

 Our normal number system is base 10
 This means that our digits are: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9
 Base 10 means that you need 2 digits to represent ten, namely

1 and 0
 Each place in the number as you move left corresponds to an

increase by a factor of 10

3,482,931 OnesMillions

Hundreds

Thousands

TensHundred
thousands

Ten thousands

 The binary number system is base 2
 This means that its digits are: 0 and 1
 Base 2 means that you need 2 digits to represent two, namely

1 and 0
 Each place in the number as you move left corresponds to an

increase by a factor of 2 instead of 10

11111101000 Ones1024's

Sixteens

Thirty twos
Eights

Sixty fours

Twos

Fours
256's

128's

512's

 This system works fine for unsigned integer values
 However many bits you've got, take the pattern of 1's and 0's and

convert to decimal
 What about signed integers that are negative?
 Most modern hardware (and consequently C and Java) use two's

complement representation

 Two's complement only makes sense for a representation
with a fixed number of bits
 But we can use it for any fixed number

 If the most significant bit (MSB) is a 1, the number is negative
 Otherwise, it's positive

 Unfortunately, it's not as simple as flipping the MSB to change
signs

 Let's say you have a positive number n and want the
representation of –n in two's complement with k bits

1. Figure out the pattern of k 0's and 1's for n
2. Flip every single bit in that pattern (changing all 0's to 1's and

all 1's to 0's)
 This is called one's complement

3. Then, add 1 to the final representation as if it were positive,
carrying the value if needed

 For simplicity, let's use 4-bit, two's complement
 Find -6
1. 6 is 0110
2. Flipped is 1001
3. Adding 1 gives 1010

 Let's say you have a k bits representation of a negative
number and want to know what it is

1. Subtract 1 from the representation, borrowing if needed
2. Flip every single bit in that pattern (changing all 0's to 1's and

all 1's to 0's)
3. Determine the final integer value

 For simplicity, let's use 4-bit, two's complement
 Given 1110
1. Subtracting 1 1101
2. Flipped is 0010
3. Which is 2, meaning that the value is -2

Binary Decimal Binary Decimal
0000 0 1000 -8
0001 1 1001 -7
0010 2 1010 -6
0011 3 1011 -5
0100 4 1100 -4
0101 5 1101 -3
0110 6 1110 -2
0111 7 1111 -1

 Using the flipping system makes it so that adding negative
and positive numbers can be done without any conversion
 Example 5 + -3 = 0101 + 1101 = 0010 = 2
 Overflow doesn't matter

 Two's complement (adding the 1 to the representation) is
needed for this to work
 It preserves parity for negative numbers
 It keeps us with a single representation for zero
 We end up with one extra negative number than positive number

 Okay, how do we represent floating point numbers?
 A completely different system!
 IEEE-754 standard
 One bit is the sign bit
 Then some bits are for the exponent (8 bits for float, 11 bits for

double)
 Then some bits are for the mantissa (23 bits for float, 52 bits for

double)

 They want floating point values to be unique
 So, the mantissa leaves off the first 1
 To allow for positive and negative exponents, you subtract 127

(for float, or 1023 for double) from the written exponent
 The final number is:
 (-1)sign bit × 2(exponent – 127) × 1.mantissa

 How would you represent zero?
 If all the bits are zero, the number is 0.0

 There are other special cases
 If every bit of the exponent is set (but

all of the mantissa is zeroes), the value
is positive or negative infinity
 If every bit of the exponent is set (and

some of the mantissa bits are set), the
value is positive or negative NaN (not a
number)

Number Representation
0.0 0x00000000
1.0 0x3F800000
0.5 0x3F000000
3.0 0x40400000

+Infinity 0x7F800000

-Infinity 0xFF800000

+NaN
0x7FC00000

and others

 For both integers and floating-point values, the most significant
bit determines the sign
 But is that bit on the rightmost side or the leftmost side?
 What does left or right even mean inside a computer?

 The property is the endianness of a computer
 Some computers store the most significant bit first in the

representation of a number
 These are called big-endian machines

 Others store the least significant bit first
 These are called little-endian machines

 Usually, it doesn't!
 It's all internally consistent
 C uses the appropriate endianness of the machine

 With pointers, you can look at each byte inside of an int (or other
type) in order
 When doing that, endianness affects the byte ordering

 The term is also applied to things outside of memory addresses
 Mixed-endian is rare for memory, but possible in other cases:

http://faculty.otterbein.edu/ wittman1/comp2400/

More specificMore specific

Function Result Function Result

cos(double theta) Cosine of theta exp(double x) ex

sin(double theta) Sine of theta log(double x) Natural logarithm of x

tan(double theta) Tangent of theta log10(double x) Common logarithm of x

acos(double x) Arc cosine of x
pow(double base,
double exponent)

Raise base to power
exponent

asin(double x) Arc sine of x sqrt(double x) Square root of x

atan(double x) Arc tangent of x ceil(double x) Round up value of x

atan2(double y,
double x)

Arc tangent of y/x floor(double x) Round down value of x

fabs(double x) Absolute value of x
fmod(double value,
double divisor)

Remainder of dividing
value by divisor

 You must #include <math.h> to use math functions

#include <math.h>
#include <stdio.h>

int main()
{

double a = 3.0;
double b = 4.0;
double c = sqrt(a*a + b*b);
printf("Hypotenuse: %f\n", c);
return 0;

}

 Just using #include gives the headers for math functions,
not the actual code

 You must link the math library with flag –lm

 Now, how are you supposed to know that?

> gcc hypotenuse.c -o hypotenuse -lm

> man 3 sqrt

 Man (manual) pages give you more information about commands and functions, in 8 areas:
1. General commands
2. System calls
3. Library functions (C library, especially)
4. Special files and devices
5. File formats
6. Miscellaneous stuff
7. System administration

 Try by typing man topic for something you're interested in
 If it lists topics in different sections, specify the section

 For more information:

> man 3 sqrt

> man man

 Preprocessor directives
 Single character I/O

 Keep reading K&R Chapter 1
 Keep working on Project 1
 No class Monday!

	COMP 2400
	Last time
	Questions?
	Project 1
	Quotes
	�C Literals
	Literals
	Integers in other bases
	Printing in other bases
	Data Representation
	Base 10 (decimal) numbers
	Base 10 Example
	Base 2 (binary) numbers
	Base 2 Example
	Binary representation
	Two's complement
	Negative integer in two's complement
	Example
	Two's complement to negative integer
	Example
	All four bit numbers
	But why?!
	Floating point representation
	More complexity
	Except even that isn't enough!
	One little endian
	Why does it matter?
	Math Library
	Math library
	Math library in action
	It doesn't work!
	My main man
	Upcoming
	Next time…
	Reminders

